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Creative thinking is a hallmark of human cognition, which enables us to generate novel and useful ideas. Neverthe- 

less, its emergence within the macro-scale neurocognitive circuitry remains largely unknown. Using resting-state 

fMRI data from two large population samples (SWU: n = 931; HCP: n = 1001) and a novel “travelling pattern pre- 

diction analysis ”, here we identified the modularized functional connectivity patterns linked to creative thinking 

ability, which concurrently explained individual variability across ordinary cognitive abilities such as episodic 

memory, working memory and relational processing. Further interrogation of this neural pattern with graph 

theoretical tools revealed both hub-like brain structures and globally-efficient information transfer paths that 

together may facilitate higher creative thinking ability through the convergence of distinct cognitive operations. 

Collectively, our results provide reliable evidence for the hypothesized emergence of creative thinking from core 

cognitive components through neural integration, and thus allude to a significant theoretical advancement in the 

study of creativity. 
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. Introduction 

Creativity can be defined as our ability to generate novel and useful

deas ( Beaty et al., 2016 ). Enabling an unprecedented capacity for prob-

em solving and innovation ( Sternberg, 1999 ), this foundational skill is

uggested to constitute a vital component of the adaptive success of our

pecies. In addition to lying at the roots of extraordinary achievements

n literature and arts such as poetry composition and musical improvi-

ation, creative thinking enhances productivity by promoting advance-

ents in industrial design and scientific research ( Kaufman and Stern-

erg, 2010 ). Relying on a complex interaction of biology and environ-

ent, emerging findings now highlight the brain-based underpinnings

f creative cognition and its central importance in healthy mentation

 Jauk, 2019 ; Khalil et al., 2019 ). Nevertheless, neural mechanisms that

ive rise to creative cognition remains a matter of debate, requiring fur-

her investigation. 

Although creative thinking is distinguishable from ordinary cogni-

ive processes, recent perspectives argue that it does not rely on any spe-
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ial cognitive process, but can rather be viewed as an emergent property

hat arises from the interaction of a set of ordinary cognitive processes

 Abraham and Windmann, 2007 ; Benedek and Fink, 2019 ; Ward and

inke, 1995 ). In line with this view, numerous behavioral studies have

ow reported that higher-quality creative thought can be attributed

o higher performance in cognitive operations such as memory-based

rocessing (e.g., semantic retrieval and association) ( Gray et al., 2019 ;

enett et al., 2018a ), cognitive control (e.g., working memory, inhi-

ition, and cognitive flexibility) ( Benedek et al., 2014 ; Dreu et al.,

011 ; Dygert and Jarosz, 2020 ), attention (e.g., focused and flexible

ttention) ( Nusbaum and Silvia, 2011 ; Zabelina and Robinson, 2010 ),

ental imagery (e,g., mental simulation of perceptual or motor states)

 LeBoutillier and Marks, 2003 ) and reasoning (e.g., analogical reason-

ng) ( Green et al., 2012 ). Together, this evidence suggests that creative

hinking requires the combined function of multiple cognitive processes.

At the neural level, converging evidence from neuroimaging stud-

es illustrate that neural activities in creative thinking are widely dis-
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harge of different cognitive processes ( Chen et al., 2020 ). For example,

he brain areas that generally contribute to creative thinking include the

upplementary motor area, which may be attributed to the internally-

riven free selection of motor sequences, mental imagination, and motor

lanning; the left dorsolateral prefrontal cortex, which may help main-

ain and integrate goal-relevant information, as well as other central

xecutive functions such as flexible attention and selection; the angular

yrus, which may allow for the retrieval and integration of information

rom episodic and semantic memory that are relevant for creative think-

ng ( Chen et al., 2020 ; Gonen-Yaacovi et al., 2013 ; Kleibeuker et al.,

016 ; Wu et al., 2015 ). Collectively, these brain-based findings allude

o the interactive engagement of distinct brain regions with dissociable

unctions in order to support creative thinking. 

The latest perspectives from cognitive neuroscience now suggest

hat the cognitive processes, supported by specific functional interac-

ions amongst distinct large-scale brain networks, are of vital impor-

ance to the emergence of creative thinking ( Beaty et al., 2019 ). Par-

icularly, both task-based and resting-state functional magnetic reso-

ance imaging (fMRI) studies have revealed that enhanced coupling

etween the default mode and the frontoparietal control networks,

omprise a prominent feature of the neural mechanism behind cre-

tive thinking ( Beaty et al., 2016 ). Their cooperation may simulta-

eously support the goal-directed memory retrieval ( Madore et al.,

019 ) and prepotent-response inhibition ( Beaty et al., 2017 ) during

he course of creative thinking. In parallel, recent evidence addition-

lly indicate that enhanced integration abilities of distinct brain areas

hat support sensorimotor processing can also facilitate creative think-

ng ability ( Kenett et al., 2018b ). Collectively, these findings suggest

hat specific functional integration amongst large-scale brain networks

ay constitute a vital component of our capacity to think in a cre-

tive manner. However, how neural integration facilitates the conver-

ence between creative thinking and different cognitive processes re-

ains largely unexplored. Specifically, the set of cognitive units that

ive rise to high versus low creative thinking ability and their neu-

al instantiations within the topological organization of the intrin-

ic large-scale brain network interactions have not been previously

nvestigated. 

With the aim of addressing this question, we first identified the

hole-brain pattern for high versus low creative thinking ability, by

inking individuals’ creative thinking ability with resting-state func-

ional connectivity (rs-FC) data, through the stability-based feature

mportance identification ( Rondina et al., 2013 ) in a large sample

 n = 931). Creative thinking ability was measured by three divergent

hinking tasks that collectively provided valid indicators of real-world

reative achievements ( Jauk et al., 2014 ). Next, the identified brain pat-

erns were transferred to the HCP dataset, in which participants were

xtensively profiled for various ordinary cognitive abilities. Then, a pre-

iction analysis was carried out in order to test the predictive powers

f creativity-related neural representation in explaining individual dif-

erences across different cognitive abilities. Furthermore, to examine

hether the highly creative brain is topologically constructed in a man-

er that could support information processing across multiple cognitive

rocesses, graph theoretical tools ( Guimera and Amaral, 2005 ) along

ith a meta-analytic decoding approach ( Poldrack et al., 2012 ) were

mployed to detect the cognition-specific hubs of the creativity-related

rain pattern. Finally, given the theoretical assumptions highlighting

he importance of functional integration underlying creative thinking,

e also examined the information transfer efficiency ( Latora and Mar-

hiori, 2001 ) based on the wiring rules of this pattern, in order to as-

ess whether highly creative brains possess greater capacity for globally-

fficient communication across functional networks. The results of this

tudy not only describe the neural profile associated with creative think-

ng in relation to multiple cognitive processes, but also provide a mech-

nistic explanation to creativity as an emergent property from the inter-

ctions of different cognitive processes, that could contribute to a crucial

heoretical advancement. 
t  

2 
. Methods and materials 

.1. Datasets 

.1.1. Southwest University (SWU) healthy young adult sample 

The main SWU sample employed in our study consists of data

rom two independent research projects, namely the Southwest Univer-

ity Longitudinal Imaging Multimodal (SLIM) project and Gene-Brain-

ehavior (GBB) project. With the aim of testing the validity and reli-

bility of our findings, we additionally utilized data from an indepen-

ent SWU validation sample. All research projects were approved by the

outhwest University Brain Imaging Center Institutional Review Board

nd written informed consent was obtained from each participant in ac-

ordance with the relevant guidelines and regulations outlined in the

eclaration of Helsinki. The recruitment program and exclusion criteria

re detailed in our previous publications ( Chen et al., 2019 ; Liu et al.,

017 ). 

All neuroimaging data for the above-mentioned projects were col-

ected at the Southwest University Brain Imaging Center with a 3.0-T

iemens Trio MRI scanner (Siemens Medical, Erlangen, Germany), us-

ng an eight channel phased array head coil. While the high-resolution

D T1-weighted structural images were obtained using a Magnetization

repared Rapid Acquisition Gradient-echo (MPRAGE) sequence (TR/

E = 1900 ms/ 2.52 ms, FA = 9°, FOV = 256 × 256 mm 

2 ; slices = 176;

hickness = 1.0 mm; voxel size = 1 × 1 × 1 mm 

3 ), the resting-state

MRI images were acquired using a Gradient-echo Echo Planar Imaging

GRE-EPI) sequence (TR/ TE = 2000 ms/ 30 ms, FA = 90°, resolution

atrix = 64 × 64, FOV = 220 × 220 mm 

2 , thickness = 3 mm, slices = 32,

cquisition voxel size = 3.4 × 3.4 × 4 mm 

3 , volumes = 242). In the SLIM

nd GBB projects, participants were instructed to close their eyes and

efrain from falling asleep for the duration of the resting-state scanning,

hereas participants in the SWU validation sample were instructed to

est with their eyes open, fixating on a crosshair. 

Following the exclusion of participants with missing demographic

nformation (e.g., name, gender, and serial number) across different as-

essments and tasks, abnormal structural images (e.g., enlarged ventri-

les), poor functional imaging signal intensity, and excessive head mo-

ion, we preserved data from 916 participants in SLIM, 764 participants

n GBB, and 108 participants in the SWU validation sample. The cohort

f 931 participants in the SLIM and GBB projects who fully completed

ll tasks related to creative thinking ability was labeled as the main SWU

ample. The average age for this group was 20.10 years (range = 17 -

7, SD = 1.28) with a 328/603 male to female ratio. The average age

or the 108 participants in the SWU validation sample was 20.29 years

range = 18 - 24, SD = 0.75) with a 39/69 male to female ratio. 

.1.2. Human connectome project (HCP) healthy young adult sample 

The behavioral assessments and minimally-preprocessed neuroimag-

ng data from the HCP S1200 release was used in this study ( Van Es-

en et al., 2013 ). Detailed information about this sample is provided in

he 1200 Subjects Data Release Reference Manual, which can be found

t ( https://www.humanconnectome.org/ ). Briefly, in the HCP sample

ll imaging data was collected on a customized Siemens Skyra scan-

er, using a standard 32-channel Siemens receive head coil. Two sep-

rate averages of the T1-weighted structural images were acquired us-

ng a 3D MPRAGE sequence (TR/ TE = 2400 ms/ 2.14 ms, FA = 8°,

OV = 222 × 224 mm 

2 ; slices = 176; thickness = 0.7 mm; voxel

ize = 0.7 × 0.7 × 0.7 mm 

3 ). In addition, each participant was scanned

uring two resting-state fMRI sessions (REST1 & REST2) on two separate

ays using a GRE-EPI sequence. For each session, there were two sepa-

ate 14 min 34 s acquisitions in left-to-right (LR) and right-to-left (RL)

hase-encoding directions (volumes = 1200, TR/ TE = 720 ms/ 33.1 ms,

A = 52°, resolution matrix = 104 × 90, FOV = 208 × 180 mm 

2 , thick-

ess = 2 mm, slices = 72, acquisition voxel size = 2 × 2 × 2 mm 

3 ). During

he resting-state fMRI sessions, participants were instructed to lie with

heir eyes open, fixating on a crosshair. In order to achieve consistency

https://www.humanconnectome.org/
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ith the SWU sample, only the LR runs from both days were utilized

n this study. Detailed information on the HCP resting-state fMRI data

an be found in the work of Smith et al. (2013 ). Finally, we employed

he maximum number of available data ( n = 1001) for each of the HCP

ehavioral measures. The average age for this group was 28.72 years

range = 22 - 37, SD = 3.71) with a 464/ 537 male to female ratio. 

.2. Behavioral tasks 

.2.1. Assessment of creative thinking ability 

In this study, individuals creative thinking ability (CTA) was assessed

y a set of divergent thinking tasks. Divergent thinking, also known as

ognitive creative potential, is widely acknowledged as the key com-

onent of creative thinking ( Jauk, 2019 ; Runco and Acar, 2012 ), and

as been regarded as a valid indicator of real-world creative achieve-

ents ( Jauk et al., 2014 ). Compared to other aspects of cognitive abili-

ies which are commonly assessed by close-ended problems that always

ave correct solutions, the divergent thinking task requires participants

o generate unusual but meaningful solutions to open-ended questions.

n order to obtain generalizable results, we employed three separate di-

ergent thinking tasks that quantified individual differences in creative

hinking ability: (1) alternative uses task (AUT), (2) product improve-

ent task (PIT) and (3) figural creativity task (FCT). In the AUT task (2

tems, 6 min), subjects were instructed to list as many interesting and

nusual uses for objects (can and brick) as possible ( Sun et al., 2016 ). In

he PIT task (1 items, 10 min), subjects were instructed to write down

s many ideas as possible to improve an elephant toy in order to make

t more enjoyable and appealing ( Chen et al., 2016 ). In the FCT task (10

tems, 10 min), subjects were instructed to draw up as many uncommon

ut meaningful sketches as possible on the basis of incomplete figures

 Ye and Hong, 1988 ). All these 3 tasks were carried out via paper and

encil, and participants’ responses were assessed by 4 trained raters with

 uniform rating manual. More detailed information can be seen in our

revious work ( Chen et al., 2019 ). For each test, responses were scored

nto dimensions of fluency and originality. The former is defined as the

umber of meaningful and relevant responses, and the latter is defined

s the degree of uncommonness for each idea. Given that the assessment

rocess was conducted separately by different raters in SLIM, GBB and

he supplementary SWU sample, here, we transformed the scores in ev-

ry dimension of each test into Z scores within each sample. This aimed

o prevent a systematic assessment bias across raters and projects. Fi-

ally, we took the weighted mean of originality and fluency from the

bove 3 tasks as the representative index of individual’s creative think-

ng ability. 

.2.2. Assessment of ordinary cognitive abilities 

Participants in the HCP sample underwent various behavioral tests

hat were part of the NIH Toolbox battery as well as several Non-NIH

oolbox behavioral assessments. In order to unravel neural represen-

ations that link creative thinking ability to different ordinary cogni-

ive process, we primarily focused on 13 cognitive factors highlighted

n the HCP data dictionary and five extra cognitive factors from the

ask-based fMRI data (18 in total). The assessments of these cognitive

actors include: Episodic Memory; Cognitive Flexibility; Inhibition; Fluid

ntelligence; Reading Decoding; Vocabulary Comprehension; Processing

peed; Self-regulation/Impulsivity; Spatial Orientation; Sustained At-

ention (Sensitivity); Sustained Attention (Specificity); Verbal Episodic

emory; Working Memory; Language Task (Average Difficulty Level

n Story Condition); Language Task (Average Difficulty Level in Math

ondition); Relational Task Accuracy (Match Blocks); Relational Task

ccuracy (Relational Blocks); Working Memory Task Accuracy (2-back).

owever, with the aim of testing whether the detected correlations were

pecific to cognitive factors, we also included 24 non-cognitive factors

rom the HCP data dictionary. Specifically, these belong to the categories

f “Alertness ”, “Emotion ”, and “Personality ”. A complete list of the
3 
bove-mentioned behavioral measures is provided in the Supplemen-

ary Table 1. More detailed information related to these measures can

e found in the HCP Wiki page ( https://wiki.humanconnectome.org/ ). 

.3. Data preprocessing 

.3.1. RS-fMRI data preprocessing 

Neuroimaging data from different samples (SWU and HCP samples)

ere preprocessed independently. The main and validation SWU sam-

les were preprocessed using the Data Processing & Analysis of Brain

maging toolbox (DPABI; Version 3.1) ( Yan et al., 2016 ) and Statisti-

al Parametric Mapping (SPM; Version 8.0) software package, based on

he MATLAB platform (Version 18a). First 10 functional volumes were

iscarded to suppress equilibration effects. Remaining 232 vol. were

orrected for slice-timing via sinc interpolation and adjusted for head

otion using rigid-body transformation with 6 degrees of freedom (3

ranslations and 3 rotations). Data from participants whose mean frame-

ise displacement was greater than 0.2 mm was excluded from further

rocessing ( Jenkinson et al., 2002 ). The functional volumes were then

patially normalized to the Montreal Neurological Institute (MNI) co-

rdinate space using the unified segmentation-normalization approach

 Ashburner and Friston, 2005 ). Here, the temporal signal-to-noise ratio

tSNR) was calculated as the voxel-wise mean of the MRI signal over

ime divided by the standard deviation of the time series. Participants

ith mean tSNR under 2 standard deviations were excluded from fur-

her analysis. We subsequently applied the Friston 24-parameter model

 Friston et al., 1996 ) to regress out head motion effects from the re-

ligned data (6 motion parameters, 6 temporal derivatives, and their

quares) based on recent findings highlighting that higher-order models

emonstrate additional benefits in removing head motion-related arti-

acts ( Yan et al., 2013 ). Next, the cerebrospinal fluid signal and white

atter signal was regressed out to reduce respiratory and cardiac effects.

oreover, given latest reports which indicate that global signal regres-

ion can spuriously increase the association between functional connec-

ivity and behavior ( Li et al., 2019 ), the whole brain signal was also re-

ressed out. The nuisance regressors also included linear and quadratic

rends to remove low-frequency drifts. Finally, bandpass filtering (0.01–

.1 Hz) and spatial smoothing (4 mm full width at half maximum in each

irection) were performed. 

For the HCP sample, we utilized the minimally-preprocessed neu-

oimaging data using the C-PAC pipeline. Detailed information on the

inimal-preprocessing steps can be found in the work of Glasser et al.

2013 ) and 1200 Subjects Data Release Reference Manual. To ensure rel-

tively consistent preprocessing procedures between the HCP and SWU

atasets, several additional steps were subsequently carried out in the

ollowing order: (i) regression of nuisance covariates; (ii) bandpass fil-

ering; (iii) spatial smoothing. All parameters for the above-mentioned

rocedures were consistent with other datasets we used in this study. 

.3.2. Functional network construction 

For both datasets, functional connectivity matrices were constructed

sing the GRETNA toolbox ( Wang et al., 2015 ). First, the automated

natomical labeling (AAL) template ( Tzourio-Mazoyer et al., 2002 ) was

andomly parcellated into 1024 regions with equal volume size (AAL-

024 template) using the method developed by Zalesky et al. (2010 ).

ext, these 1024 ROIs were used as nodes from which to extract aver-

ge BOLD time series. For each participant, Pearson correlations were

alculated between the time series of all nodes included in the parcella-

ion scheme. The correlation coefficients were then converted to Fisher’s

-values, which characterized the edges in the functional connectivity

atrix. We retained only positive correlations for further analysis. Note

hat, because HCP dataset includes two separate runs, the functional

onnectivity matrices from these two runs were averaged in order to

btain a mean connectivity matrix. Finally, covariates of sex, age as

ell as project membership (i.e. SLIM or GBB) were regressed out from

https://wiki.humanconnectome.org/
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Fig. 1. Schematic diagram for the construction of whole-brain connectivity patterns related to creative thinking ability. In order to build robust relationships 

between rs-FC and creative thinking ability (CTA), a resampling strategy (survival counting on random subsamples) was applied to construct the CTA-related feature 

importance matrices. Given the correlation direction, the positive and negative feature importance matrices were identified as high and low-creative brain patterns. 

The edge value in these feature importance matrices range from 0 to 1, indicating the importance of a given rs-FC to high and low-creative brain patterns. Higher 

values in these matrices represented larger importance of a given rs-FC feature. In addition, to detect the global topological organization of both matrices, a Louvain 

algorithm was applied to decompose the matrices into distinct modules. 
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very participants’ functional connectivity matrix. In addition, the 7-

etwork parcellation from Yeo et al. (2011 ) was applied to label the

OIs according to their maximal spatial overlap (i.e. largest number of

oxel-wise overlap) with known large-scale brain networks. The Yeo7-

arcellation divides the cortex into seven specific functional networks:

isual, somatomotor, dorsal attention, salience, ventral attention, lim-

ic, frontoparietal control and default mode networks. Together with

ubcortical regions identified by the AAL template, we finally assigned

ll AAL-1024 regions into eight functional networks. 

.4. The construction of whole-brain connectivity patterns 

The schematic diagram of whole-brain connectivity pattern construc-

ion can be seen in Fig. 1 . In detail, to build robust brain patterns based

n rs-FC data that were associated with creative thinking ability, a sim-

lified stability-based feature importance identification approach (i.e.

urvival counting on random subsamples) ( Rondina et al., 2013 ) was

pplied in the present study. First, we applied jackknife resampling to

andomly group the original sample into five folds. This procedure was

epeated 200 times, generating 1000 (5 × 200) subsets. Second, we cal-

ulated the Pearson correlation coefficient between each rs-FC (edge)

nd the composite divergent thinking score in every sample set and mea-

ured the number of times (n) a specific brain-behavior link survived at

 given significance level. In line with our prior studies, here we set the

ignificance level as p < 0.005 ( Liu et al., 2018 ). The ratio of significant

dges to number of permutations (n/1000) was then taken as the weight

f a given edge, with values ranging from 0 to 1. Repeating this proce-

ure across all edges generated two 1024 × 1024 matrices, in which

dge values reflected the significance of a given edge’s positive or nega-

ive relation to creative thinking ability. In other words, higher values in

hese matrices represented larger importance of a given feature, which

ere thus labeled as positive and negative feature importance matrices.

hese matrices constitute the high and low-creative brain patterns in

his study. In addition, the feature importance matrices for different or-

inary cognitive abilities were also built using the same procedure as

entioned above. 

Moreover, with the aim of characterizing the topological organiza-

ion of the identified patterns of creative thinking ability, we applied a

ouvain-like greedy algorithm ( Blondel et al., 2008 ; Jutla et al., 2011 )

hat decomposed the two feature importance matrices of creative think-

ng ability into separate communities or modules. The Louvain commu-

ity detection method aims to maximize the modularity index 𝑄 defined
4 
s ( Fortunato, 2010 ; Porter et al., 2009 ): 

 = 

1 
2 𝑚 

∑
𝑖𝑗 

[ 
𝐴 𝑖𝑗 − 𝛾

𝑘 𝑖 𝑘 𝑗 

2 𝑚 

] 
𝛿
(
𝑐 𝑖 𝑐 𝑗 

)
here 𝐴 𝑖𝑗 means the edge weight between nodes 𝑖 and 𝑗; 𝑘 𝑖 and 𝑘 𝑗 rep-

esent the sum of the edge weights attached to nodes 𝑖 and 𝑗, separately;

 𝑚 mean the sum of all of the edge weights; 𝑐 𝑖 and 𝑐 𝑗 are the commu-

ities nodes are belong to; 𝛿( 𝑐 𝑖 𝑐 𝑗 ) is equal to 1 if 𝑐 𝑖 = 𝑐 𝑗 , and is equal to

 otherwise; 𝛾 is a structural resolution parameter, which can tune the

elative number of modules (higher value leads to smaller modules). 

In the initialization of Louvain-like locally greedy algorithm, there

re N modules (N is the number of nodes in the graph), resulting in the

odularity index 𝑄 = 0. The algorithm proceeds by iteratively assigning

odes to modules until no appreciable increases in index 𝑄 can be ob-

erved. Here, we set the structural resolution parameter 𝛾 to the default

alue 1. Given the stochastic nature of the modularity maximization

lgorithm, the performance of algorithm was repeated for 100 times,

nd then a single consensus partition from the agreement matrix was

dentified ( Lancichinetti and Fortunato, 2012 ). The choice of 𝛾 was im-

ortant to the present study, because it could directly tune the modular

tructure of the underlying organizational pattern of feature importance

atrices of creative thinking. Here, we varied the 𝛾 within a range of 0.6

o 1.5 in increments of 0.01, in order to test the stability of community

etection results across 100 repetition. We then applied the average of

he variation of information (VI) ( Meil ă, 2007 ) between any pair of 100

ommunity detection results to quantify the stability of the uncovered

odules. The higher the VI value is, the lower the stability is. Let 𝐶 and

 

′ be two different partition of same nodes set, and 𝐶 = { 𝐶 1 , 𝐶 2 , … , 𝐶 𝑘 } ,
 

′ = { 𝐶 

′
1 , 𝐶 

′
2 , … , 𝐶 

′
𝑘 ′
} . Meanwhile, the subsets in 𝐶 and 𝐶 

′ are mutually

isjoint. Let the number of nodes in 𝐶 and in subset 𝐶 𝑘 be 𝑛 and 𝑛 𝑘 ;

n 𝐶 

′ and in subset 𝐶 

′
𝑘 ′

be 𝑛 and 𝑛 𝑘 ′ . The entropy of 𝐶 (or 𝐶 

′) can be

dentified as: 

 ( 𝐶 ) = − 

𝑘 ∑
𝑘 =1 

𝑛 𝑘 

𝑛 
⋅ log 

𝑛 𝑘 

𝑛 

The mutual information between 𝐶 and 𝐶 

′ can be identified as: 

 

(
𝐶 , 𝐶 

′) = 

𝑘 ∑
𝑘 =1 

𝑘 ′∑
𝑘 ′=1 

|||𝐶 𝑘 ∩ 𝐶 

′
𝑘 ′
|||

𝑛 
⋅ log 

|||𝐶 𝑘 ∩𝐶 ′𝑘 ′ |||
𝑛 

𝑛 𝑘 

𝑛 
⋅
𝑛 𝑘 ′
𝑛 

Then, VI can be defined as: 

 𝐼 
(
𝐶 , 𝐶 

′) = 𝐻 ( 𝐶 ) + 𝐻 

(
𝐶 

′) − 2 𝐼 
(
𝐶 , 𝐶 

′)
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After implementing the community detection for both high and low-

reative brain patterns, the architectural differences in the module af-

liations of these two brain patterns were visualized using alluvial

lots as implemented in the ggalluvial package in R ( https://cran.r-

roject.org/web/packages/ggalluvial/index.html ). 

.5. The validation of whole-brain connectivity patterns 

A machine learning framework was applied here to test the valida-

ion of whole-brain connectivity patterns underlying creative thinking

bility. First, we conducted a feature extraction procedure for edges re-

ated to individual’s creative thinking ability, that is, we took the feature

mportance matrices as "filters" to extract edges based on their values in

he feature importance matrices of creative thinking ability. Specifically,

very edge in the individual’s original rs-FC matrix was separately multi-

lied by the corresponding edge value in the positive or negative feature

mportance matrices (feature extraction). After that, a feature reduction

rocedure was applied to the extracted edges. In detail, we first used

he principal component analysis (PCA) to save 80% variations of fea-

ures (extracted edges), then used an autoencoder to encode the reserved

rincipal components into 10 dimensions. Note that, this feature reduc-

ion procedure was carried out separately within (or between) different

odules. So, every module had the same dimension of features and a

otal number of 90 features were reserved for each pattern (40 for high-

reative pattern; 50 for low-creative pattern). For internal validation, a

idge regression ( Hoerl and Kennard, 1970 ) with 5-fold cross-validation

5F-CV) was applied in the main sample to test whether the extracted

eatures could reliably predict the individuals’ CTA scores. Ridge regres-

ion is a model that minimizes the sum of the squared prediction error

n the training data and the sum of the squares of regression coefficients.

his technique can shrink the regression coefficients 𝛽, resulting in bet-

er generalizability for predicting unseen samples. Its object function

an be defined as: 

in 
𝛽

𝑁 ∑
𝑖 =1 

(
𝑓 
(
𝑥 𝑖 
)
− 𝑦 𝑘 

)2 + 𝜆

𝑃 ∑
𝑗=1 

‖𝛽𝑗 ‖2 

ere a regularization parameter 𝜆 is used to control the trade-off be-

ween the prediction error of the training data and L2-norm regular-

zation. A large 𝜆 corresponds to more penalties on variance ( Zou and

astie, 2005 ). Within each loop of the outer 5F-CV, an inner 5F-CV was

lso added to determine the optimal parameter 𝜆 from [2 − 5 , 2 − 4 ,…2 9 ,

 

10 ] ( Cui and Gong, 2018 ). For each loop, the mean absolute error

MAE) were generated for each 𝜆 value. The 𝜆 value with smallest MAE

as then chosen as the optimal parameter. The statistical significance

f the cross-validation procedure was assessed using permutation test-

ng. Briefly, for each permutation, we randomized the behavior scores,

nd repeated the prediction processes to acquire the random prediction

ccuracy. An empirical cumulative distribution of the prediction accu-

acy was then obtained with 5000 permutations. Furthermore, a "lesion-

ng" strategy was used to determine the predictive powers of different

odules in explaining behavioral data. For each of the outer 5F-CV,

e selectively omitted all features within (or between) different mod-

les, observing to what a degree the predictive performances (Pearson

orrelation between true and predicted values) could be influenced by

issing a given part of the feature set. Then, the difference of predictive

erformance between the complete and perturbed feature sets was iden-

ified as the predictive powers of omitted features. In addition, an exter-

al validation was carried to test the model’s generalizability. That is,

he prediction model as well as feature reduction parameters trained in

he main SWU sample was applied to the SWU validation sample. Then,

he model’s generalizability was identified by the correlation strength

etween predicted and true values of creative thinking ability in the

upplementary sample. 
5 
.6. Travelling pattern prediction analysis 

Next, in order to test the links between the neural correlates of cre-

tive thinking and multiple ordinary cognitive abilities, we employed a

ravelling pattern prediction analysis in which creativity-related brain

atterns (i.e. the feature importance matrices) as well as the prediction

odels trained in the SWU sample were transferred to the HCP sample.

 similar practice from a prior study indicated that even across two het-

rogeneous samples the prediction model built through the functional

onnectivity data can reliably reveal the intrinsic correlation between

ifferent cognitive measures (e.g., working memory and fluid intelli-

ence) ( Bertolero and Bassett, 2020 ). Specifically, first, the same fea-

ure extraction and reduction procedures in Section 2.5 were applied to

xtract the features related to creative thinking ability in the HCP rs-FC

ata. To distinguish the predictive performance of different modules in

he creative brain patterns, the extracted rs-FC features were further di-

ided into different parts according to their module affiliations. Second,

or different modules, we separately built the ridge regression models to

redict creative thinking ability in the SWU sample. Then, the same pre-

iction models along with the same feature selection procedures were

ransferred to the HCP sample to test whether models built for predict-

ng creative thinking ability could also significantly predict different as-

ects of cognitive abilities measured in the HCP sample. The predictive

erformance for different modules and cognitive factors were identified

y the Pearson correlations between true values and predicted values.

he multiple comparisons were corrected using the false discovery rate

FDR) with threshold at a p value of p < 0.05. Beyond that, although non-

ognitive factors from the HCP data dictionary (e.g., measures of emo-

ion and personality) were not the main focus of the present study, they

ere also included in the same analysis to test the specificity of relation-

hips between creative thinking and ordinary cognitive abilities. Note

hat although the difference of scanning parameters between SWU and

CP samples could affect the consistency of resting-state fMRI data, our

ain objective here was to test the correlation between creative thinking

nd different ordinary cognitive abilities, through the traveling pattern

rediction analysis. Thus, we assumed that if the neural representation

f different psychological variables could be established with sufficient

tability and validity, the intrinsic connections should be revealed even

cross heterogeneous samples ( Bertolero and Bassett, 2020 ). 

.7. Decoding the cognitive relevance of hubs in the whole-brain 

onnectivity patterns 

Moreover, to identify the hubs of brain patterns related to creative

hinking ability, the within-module degree z-score ( Guimera and Ama-

al, 2005 ) was measured on the creativity-related brain patterns, which

dentified regional importance in a given module. The within-module

egree z-score was defined as: 

 𝑖 = 

𝑘 𝑖 − 𝑘 𝑆 𝑖 

𝜎𝐾 𝑠 𝑖 

here 𝑍 𝑖 refers to the within-module degree z-score; 𝑘 𝑖 is the strength

f the connections of region 𝑖 to other regions in its affiliated module 𝑆 𝑖 ;

 𝑆 𝑖 
is the average of 𝑘 over all the regions in 𝑆 𝑖 ; and 𝜎𝐾 𝑠 𝑖 

is the standard

eviation of 𝑘 in 𝑆 𝑖 . Regions with within-module degree z-score located

n the right side of 1.5 median-absolute-deviation (MAD) were classified

s hubs in a specific module and the remaining regions were classified

s non-hubs. The regional importance map was visualized via BrainNet

iewer ( Xia et al., 2013 ). 

In order to determine the dominant cognitive abilities associated

ith creativity-linked brain patterns, we next used a topic-based meta-

nalytic decoding approach ( Poldrack et al., 2012 ) through Neurosynth.

n brief, for each module, we decoded hub regions’ within-module de-

ree z-score map by assessing their similarity to the reverse inference

eta-analysis maps generated for various cognitive topics. Then, we

https://cran.r-project.org/web/packages/ggalluvial/index.html
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ank-ordered the calculated similarities and selected topics with high-

st similarity value (top 10) as the dominant psychological feature for

 specific module. Here, a 200-topic version ( v4-topics-200 ) from the

euroSynth repository was applied, and topics that were not explicitly

elated to psychological constructs were excluded. The identified topics

re provided in Table S2. Detailed information on these topics can be

ound in http://neurosynth.org/analyses/topics/v4-topics-200/ . 

.8. Identifying the information transfer efficiencies for whole-brain 

onnectivity patterns 

Moreover, we then attempted to examine whether the highly cre-

tive brain could support integration across different cognitive processes

hrough the specific wiring rules embedded within its topological orga-

ization. For that purpose, we investigated the reciprocal of shortest

ath length, which assessed information transfer efficiency at the net-

ork level over functional connectivity paths marked by brain patterns

inked to high versus low creative thinking ability. The pairwise infor-

ation transfer efficiency 𝐸 can be defined as 𝑑 ( 𝑖, 𝑗 ) −1 , where 𝑑( 𝑖, 𝑗 )
enotes the normalized Euclidean distance ( ED ) between node 𝑖 and

( Latora and Marchiori, 2001 ) in MNI space. Then, we summarized

he pairwise information transfer efficiencies within or between differ-

nt networks to obtain a network level representation of them. Mean-

hile, to highlight the specificity of creative brain patterns, the other

8 brain patterns linked to different ordinary cognitive abilities were

lso included in the same analysis. In order to make different patterns

omparable to each other under equivalent wiring cost, here, we first

inarized all patterns across a series of thresholds (across 0.1–2% edge

ensities; [0.001: 0.001: 0.01]). The network level information transfer

fficiencies of all the patterns were then calculated at every threshold.

owever, for network level comparison, the statistical analyses were

arried out at a given threshold, whose network level metrics exhibited

he highest average correlation to metrics at other thresholds. 

Note that, in order to test whether different brain patterns displayed

opological properties to a greater extent than expected by chance under

he null hypothesis, different brain patterns were compared to 100 null

odels. The null models were generated by keeping the same numbers

f nodes and edges while randomly distributing edge links. 

.9. Validation analysis 

.9.1. The validation for modular structure of creative brain patterns 

The validation analysis was first carried out to the modular structure

haracteristics. We hypothesized that if the modular structure could of-

er valuable information independently, individuals whose functional

etwork organization were maximally similar to the high-creative brain

attern, or dissimilar to the low-creative pattern may have higher level

f creative thinking ability. Here, we applied VI index quantifying to

hat degree individual’s modular structure feature is similar to the mod-

lar structure feature of high-creative pattern ( 𝑉 𝐼 𝑝𝑜𝑠 ), and low-creative

attern ( 𝑉 𝐼 𝑛𝑒𝑔 ). The higher the VI value is, the lower the similarity is.

n addition, an aggregate indicator ( 𝑉 𝐼 𝑛𝑒𝑔 ∕ 𝑉 𝐼 𝑝𝑜𝑠 ), the VI-based positive

endency coefficient (VI-PTC), was applied to make a comprehensive

escription of these two different trends. The higher the VI-PTC is, the

ore an individual’s modular structure approaches to the high-creative

attern, and simultaneously diverges away from the low-creative pat-

ern. The schematic diagram can be seen in Fig. S6a. 

In addition, to further detect brain regions whose change of module

ffiliation affect creative thinking ability the most, a region level metric

f modular variability (MV) ( Steen et al., 2011 ) was applied to calcu-

ate the positive tendency coefficient (MV-PTC). For a given region 𝑘 ,

e evaluated its module affiliation variability between an individual’s

odular structure 𝑋 and CTA-related modular structure 𝑌 through a

etric of modular variability (MV). The MV can be identified as: 

 𝑉 𝑘 = 1 − 

||𝑋 𝑘 ∩ 𝑌 𝑘 
||

𝑋 

⋅
||𝑋 𝑘 ∩ 𝑌 𝑘 

||
𝑌 
𝑘 𝑘 

6 
here |𝑋 𝑘 | and |𝑌 𝑘 | denote the number of regions having the same mod-

le affiliation with region 𝑘 (including 𝑘 itself) in 𝑋 and 𝑌 , respectively;

𝑋 𝑘 ∩ 𝑌 𝑘 | represents the number of regions in the common node set of

and 𝑌 . As such, a small overlap between 𝑋 𝑘 and 𝑌 𝑘 is associated with

 large module affiliation variability of region 𝑘 . 

.9.2. The validation for feature importance matrix 

Since the following analyses were largely based on the feature im-

ortance matrix, it was necessary to test whether this kind of brain rep-

esentation could reliably build a relationship between the rs-FC data

nd different psychological variates. Moreover, given that the construc-

ion of the feature importance matrices required a priori threshold, it

as reasonable to test whether the threshold used in this study ( p <

.005) was appropriate. Based on the above considerations, the HCP

EST1 and REST2 data with psychological variates were employed here

o carry out supplementary validation steps for the feature importance

atrix. The reliability of patterns was tested in two different strategies:

he prediction strategy ( Rosenberg et al., 2016 ) and pattern identifica-

ion strategy ( Finn et al., 2015 ). The schematic diagram can be seen in

ig. S7a. 

In detail, we first constructed the feature importance matrices un-

erlying every psychological variate separately in HCP REST1 data and

EST2 data to generate a pair of brain patterns (i.e., the feature im-

ortance matrixes). In the prediction strategy, through the feature ex-

raction procedure mentioned in Section 2.4 , we simply summed up re-

erved edge values to generate a single predicted value for each subject.

hen the unitary linear regression model was built for each psycholog-

cal variate separately in both scan sessions. Given the pattern types

positive & negative) and scan sessions (REST1 & REST2), for each psy-

hological variate, there would be four linear regression models built.

fter that, we applied the models built in REST1 date to REST2 date,

nd vice versa, in order to test if these models could survive under the

ross validation. The reliability of single pattern in this strategy was de-

ned as the mean value of two (REST1 & REST2) correlation coefficients

etween predicted values and true values. The general reliability of all

atterns was then defined as the average value of single pattern’s reli-

bility values. In the pattern identification strategy, we first performed

he identification from REST1 data to REST2 data. That is, one pattern

onstructed in REST1 data was compared against each of the 42 pat-

erns constructed in REST2 data to find its counterpart constructed by

he same psychological variate. The similarity was defined as the Pear-

on correlation coefficient between edge values taken from the REST1

attern and each of the REST2 patterns. For a single pattern (n-1), the

dentification effect was then quantified as its counterpart (n-2)’s per-

entile in the similarity ranking. For instance, if n-2 is maximally similar

o n-1, the identification effect would be 1 (42/42). If n-2 is secondly

imilar to n-1, the identification effect would be 0.98 (41/42). The same

rocess was then carried out from REST2 data to REST1 data. Similar to

he prediction strategy, the reliability of single pattern was defined as

he mean value of two (REST1 & REST2) identification effect values. The

eneral reliability of all patterns was defined as the ratio of how many

atterns can be fully identified (identification effect = 1). Note that, for

oth of these two strategies, the feature importance matrices were con-

tructed under the thresholds from 0.05 to 0.0001 in increments of 0.05.

hen the reliability of patterns was compared in different thresholds to

nd out the optimal threshold value. 

.10. Data and code availability 

All analysis code used in this study is openly available on https:

/github.com/Zhuang2KX/MANA/tree/master/Project/CTA . Due to re-

trictions imposed by the administering institution, the SWU dataset

s only available from the authors upon request. Sharing and re-

se of this dataset require a formal data sharing agreement, as well

s approval from the relevant Institutional Review Boards. The HCP

http://neurosynth.org/analyses/topics/v4-topics-200/
http://neurosynth.org/analyses/topics/v4-topics-200/
https://github.com/Zhuang2KX/MANA/tree/master/Project/CTA
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Fig. 2. Brain patterns associated with high versus low creative thinking ability. (a) The global topological organizations of high-creative (CTA + ) and low-creative 

(CTA-) brain patterns. The areas of different colors indicate different modules in high versus low creative brain patterns, in which cortical areas are labeled based 

on the Yeo et al. 7-network parcellation scheme. Vis: visual network; SomMot: somatomotor network; DorsAttn: dorsal attention network; SalVenAttn: salience/ 

ventral attention network; Limbic: limbic network; frontoparietal: frontoparietal control network; Default: default mode network; SubCor: subcortical network. (b) 

The network affiliation of brain regions within specific modules across both high and low-creative brain patterns. The values of the radar plot indicate the proportion 

of modules in different networks. (c) The correlation between true CTA and predicted CTA scores in main SWU sample. (d) The predictive powers of rs-FC features 

identified through "lesioning" strategy across different modules. Module 1–4 indicate rs-FC features within different modules in high and low-creative brain patterns; 

inter-module indicates rs-FC features between different modules in these brain patterns. 
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pen Access Data is publicly available on the ConnectomeDB database

 https://db.humanconnectome.org ). 

. Results 

.1. Whole-brain connectivity patterns of creative thinking ability 

Our initial aim was to deduce patterns of functional interactions

mongst large-scale brain networks that were associated with high ver-

us low creative thinking ability. Utilizing a feature importance rep-

esentation approach based on resampling strategy, we built positive

nd negative rs-FC feature importance matrices to separately represent

rain patterns associated with both high and low creative thinking abil-

ty (high-creative and low-creative brain patterns). Then following the

ommunity detection procedure, the global topological organizations of

hese patterns were characterized ( Fig. 1 ). The high-creative brain pat-

ern revealed three modules ( Fig. 2 a-left and Fig. 2 b). The first module

ncompassed large parts of the visual and somatomotor networks, the

egions of which are suggested to engage in the neural coding and trans-

ormation of perceptual and action-based modalities in the human brain

 Sepulcre et al., 2012 ). The second module on the other hand, largely

ncluded the dorsal and ventral attention networks, limbic network as

ell as subcortical areas, which are critical for context-dependent at-

ention ( Farrant and Uddin, 2015 ; Kim, 2014 ). Finally, the third mod-
7 
le combined parts of the default mode and frontoparietal control net-

orks, whose regions together contribute to the memory-based cogni-

ive processing ( Murphy et al., 2018 ; Smallwood et al., 2012 ). In con-

rast, However, we found that this neural structure was perturbed in the

ow-creative brain pattern with decreased modularity ( Fig. 2 a-right and

ig. 2 b). Notably, the integration across transmodal areas was largely

roken down with a segregated topology that included modules across

oth transmodal and unimodal regions. For example, instead of forming

 module with the somatomotor network, the visual network was func-

ionally integrated with the default mode network. Supplementary anal-

sis supported the robustness of these modular structures, that they re-

ained stable across different structural resolution parameters (around

= 1) in the community detection algorithm (Fig. S1). 

To assess the validity of the identified brain patterns related to cre-

tive thinking ability across analytical procedures, the ridge regression

ith cross-validation procedures were carried out. The results supported

he validity of the identified brain patterns (cross-validation in main

WU sample: r = 0.40, p (permutation test, n = 5000) < 0.05 × 10 − 2 

two-tails), 95% confidence interval (CI) = 0.35–0.46, Fig. 2 c). In ad-

ition, the generalizability of the creativity-related brain patterns was

lso tested by an independent sample (external validation in SWU vali-

ation sample: r = 0.24, p < 0.05 (two-tails), 95% CI = 0.06–0.41, Fig.

2). Further, a "lesioning" strategy was applied to determine the predic-

ive power of different rs-FC features in explaining individual variability

https://db.humanconnectome.org
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Fig. 3. Shared neural representations between creative thinking and multiple ordinary cognitive abilities. (a) A simplified schematic representation of the “traveling 

pattern prediction analysis ”. Briefly, the creativity-related brain patterns as well as the prediction models trained in the SWU sample were transferred to the HCP 

sample, in order to test if prediction models built for predicting creative thinking ability could also significantly predict different HCP cognitive factors. The analyses 

were separately carried out in different modules of high-creative (CTA + ) and low-creative (CTA -) brain patterns. (b) The predictive powers (Pearson correlations 

between true and predicted values) of different modules. The predictive powers less than zero are set to be zero in the heat map. The labeled factors in the heat map 

indicate ordinary cognitive abilities that were significantly predicted by creativity-related features at a p -value of p < 0.05 (uncorrected). ∗ represents factors whose 

FDR adjusted p -values are less than 0.05. The bar charts indicate the row and column sums of predictive powers. (c) The distinguished predictive performances 

(Pearson correlations between true and predicted values) between cognitive factor and non-cognitive factors, as well as among different modules of high-creative 

(CTA + ) and low-creative (CTA -) brain patterns. 
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n creative thinking ability. The results indicated that most of the iden-

ified rs-FC feature sets can offer valuable information to the prediction

odel, with their predictive powers noted as greater than 0. Notably, the

eature set involving functional integration amongst the default mode

nd frontoparietal control networks (Module 3 of high-creative pattern)

isplayed the greatest importance ( Fig. 2 d). 

.2. Brain pattern of higher creative thinking ability encodes important 

eatures for multiple ordinary cognitive abilities 

We next tested whether the brain patterns related to creative think-

ng ability also contained vital rs-FC features related to different ordi-

ary cognitive abilities. For that purpose, we applied a traveling pat-

ern prediction analysis to test if prediction models built for predict-

ng creative thinking ability could also significantly predict different

spects of cognitive abilities measured in the HCP sample ( Fig. 3 a). To

istinguish the predictive powers in modules of the creativity-related

rain patterns, the analyses were separately carried out in these mod-

les. The results indicated that cognitive factors that could be suc-

essfully predicted by creativity-related rs-FC features (uncorrected, p

 0.05) included episodic memory; fluid intelligence (Raven’s Matri-

es); reading decoding; spatial orientation; Sustained Attention (speci-

city); working memory; language task difficulty (story condition); re-

ational task accuracy (math blocks); relational task accuracy (relational

locks); and working memory task accuracy (2-back). Moreover, rs-FC

eatures within modules 2 and 3, as well as between different modules

especially within the combined areas of default mode and frontopari-

tal control networks, i.e., Module 3) of high-creative pattern exhibited

igher predictive performance than other areas ( Fig. 3 b and c). How-

ver, none of the creativity-related features could significantly predict

on-cognitive factors (Fig. S4), with evidently lower predictive perfor-

ances in different feature sets than cognitive factors ( Fig. 3 c). These

esults together indicated that brain patterns of creative thinking abil-

ty specifically encode important features for a wide range of ordinary

ognitive abilities. Particularly, the higher predictive performances ex-

ibited in the high-creative brain pattern, suggest the creativity-related

s-FC features can be robustly embedded within different sets of this

attern. 
8 
.3. Brain pattern of higher creative thinking ability is dominated by hubs 

ecruited by distinct cognitive functions 

Furthermore, we next aimed to explore whether the identified brain

atterns linked to higher creative thinking ability was topologically con-

tructed in a manner that could support different cognitive processes.

o address this, we first applied within-module degree z-score on cre-

tive brain patterns to characterize brain regions’ importance within

heir own modules. The regional importance in all of the modules ex-

ibited right skewed distribution, suggesting that different brain regions

layed unequal roles within the identified modules (Fig. S4). To iden-

ify the most important regions in high versus low-creative brain pat-

erns and their dominant cognitive functions, we set regions whose re-

ional importance were located on the right side of 1.5 median-absolute-

eviation (MAD) as hubs in their subordinate module, and the remain-

ng regions as non-hubs. Then, a topic-based meta-analytic decoding

ia Neurosynth database was used to determine which psychological

unctions were preferentially related to the hub regions within differ-

nt modules. Results revealed that the regional importance of hubs be-

ween high and low-creative brain patterns exhibited a strong negative

elationship ( r = − 0.45, p < 0.05 × 10–11 (two-tails), 95% CI = − 0.54–

 0.34), whereas there was no significant correlation in non-hub regions

 r = 0.03, p = 0.43 (two-tails), 95% CI = − 0.04–0.10, Fig. 4 a). Such

esults indicate that these two antagonistic brain patterns are largely

ominated by dissociable hubs. 

Along with the meta-analytic decoding, the results also revealed that

he modules in high-creative brain pattern (CTA + ) were systematically

riven by hub regions with distinct cognitive functions. Notably, the

rst module included hubs involved in sensorimotor processing (e.g.,

otion and visual processing) in visual and sensorimotor networks; the

econd module covered hubs related to general executive functions (e.g.,

orking memory, inhibition and switching) mainly in the frontoparietal

etwork; the third module included hubs related to memory-based cog-

itive processing (e.g., language, reasoning and memory) in the default

ode and frontoparietal control networks ( Fig. 4 b). Taken together,

hese results suggest that the identified modules in high-creative brain

attern may serve as higher-order cognitive systems that recruit differ-

nt cognitive processes in order to facilitate creative thinking. In con-
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Fig. 4. Hub regions and their dominant cognitive functions in high versus low-creative brain patterns. (a) The correlation of regional feature importance (identified 

by within-module degree z-score) between high-creative (CTA + ) and low-creative (CTA -) brain patterns, in which only hub regions exhibited a strong negative 

relationship. In the scatter plots, shaded areas represent 95% CIs. Hub regions and their corresponding top 10 Neurosynth topics across different modules of (b) 

high-creative and (c) low-creative brain patterns. 
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rast, modules in the low-creative brain pattern were mainly driven by

isual and sensorimotor networks relating to functions involved in mo-

or and visual processes ( Fig. 4 c). The top 10 Neurosynth topics related

o hub regions can be seen in Table S1. 

.4. Brain pattern of higher creative thinking ability facilitates specific 

unctional integration among brain networks 

In our final attempt to understand how high-creative brain can

pecifically support the interplay of multiple cognitive processes, we in-

estigated the network level information transfer efficiencies over func-

ional connectivity paths marked by brain patterns linked to high ver-

us low creative thinking ability. Meanwhile, to highlight the specificity

f creativity-related brain patterns, the other 18 brain patterns linked

o different ordinary cognitive abilities were also included in the same

nalysis ( Fig. 5 a). In order to compare these patterns under the equiva-

ent wiring cost, all patterns were first binarized across a series of thresh-

lds (across 0.1–2% edge densities). In each threshold, different brain

atterns were also compared to 100 null models, in order to test whether

hey displayed topological properties to a greater extent than expected

y chance under the null hypothesis ( Fig. 5 b). While, given the simi-

ar network property (0.87 < r < 0.98) uncovered across different edge

ensities, the statistical analyses were carried out at a chosen edge den-

ity (1%), whose network level metrics exhibited the highest average

orrelation ( r = 0.98) to metrics at other densities ( Fig. 5 c and d). 

The results revealed that across both creative thinking ability and

rdinary cognitive abilities, the high-level brain patterns surpassed the

ow-level ones in both within-network information transfer efficiency

paired samples t -test for high vs. low (two-tails), t = 5.52, p < 0.001, Co-

en’s d = 1.26, 95% CI = 1.12 × 10 4 – 2.49 × 10 4 ) and between-network

nformation transfer efficiency (paired samples t -test for high vs. low

two-tails), t = 2.52, p < 0.05, Cohen’s d = 0.58, 95% CI = 0.45 × 10 4 

4.98 × 10 4 ). Meanwhile, these metrics also showed significant dif-

erences between empirical data and null models (independent samples

 -test for high-level pattern vs. null model (two-tails): within-network

fficiency, t = 3.12, p < 0.005, Cohen’s d = 0.78, 95% CI = 0.83 × 10 3 –

.73 × 10 3 ; between-network efficiency, t = − 21.69, p < 0.005, Cohen’s

 = − 5.43, 95% CI = − 9.92 × 10 4 – − 8.26 × 10 4 ; independent sam-
9 
les t -test for low-creative pattern vs. null model (two-tails): within-

etwork efficiency, t = − 15.5, p < 0.001, Cohen’s d = − 3.87, 95%

I = − 1.78 × 10 4 – − 1.37 × 10 4 ; between-network efficiency, t = − 25.3,

 < 0.005, Cohen’s d = − 12.72, 95% CI = − 12.72 × 10 4 – − 10.88 × 10 4 ).

aken together, these results suggest that the high-level brain patterns

ehind different aspects of cognitive factors can universally offer opti-

ized information transfer routes for both within-network and between-

etwork communications. However, the information transfer paths of

igh-level brain patterns were largely constrained by the organization

f functional networks, given the higher within-network efficiency and

ower between-network efficiency relative to null modules. Further-

ore, the results also highlighted that, compared to brain patterns of

rdinary cognitive abilities, the high-creative brain pattern displayed

articularly enhanced between-network information transfer efficiency

one sample t -test (two-tails), t = − 2.41, p < 0.05, Cohen’s d = − 0.57,

5% CI = − 11.03 × 10 3 – − 0.73 × 10 3 ), while allowing the roughly

quivalent information transfer within networks (one sample t -test (two-

ails), t = − 1.09, p = 0.29, Cohen’s d = − 0.26, 95% CI = − 5.53 × 10 3 –

.75 × 10 3 ). This suggested that the higher capacity for global informa-

ion integration is one of the most prominent features of high-creative

rain pattern ( Figs. 5 c and S5). 

To extend this finding, additional analyses were also carried out

mong the interactions of any pair of networks ( Fig. 5 d). The result in-

icated that high-creative brain pattern can widely enhance the interac-

ion among almost all transmodal brain networks, in that their between-

etwork information transfer efficiency was significantly higher than

ull models (one sample t -test (right-tail), corrected by FDR, p < 0.05).

n the other hand, the low-creative brain pattern mainly enhanced the

nformation transfer efficiency in regard to somatomotor network (one

ample t -test (right-tail), corrected by FDR, p < 0.05). Similar results

an also be found in the brain patters of various ordinary cognitive

bilities (independent sample t -test (right-tail), corrected by FDR, p <

.05). However, in the group level analysis, high-level patterns of ordi-

ary cognitive abilities merely significantly enhanced the information

ransfer efficiencies in regard to the default mode and frontoparietal

ontrol networks; and their low-level patterns enhanced the within-

etwork efficiency of somatomotor network. Taken together, results re-

ealed that, transmodal areas (especially the default mode and fron-
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Fig. 5. Comparison of network level information transfer efficiency for different brain patterns. (a) The diagram for the identification of network level information 

transfer efficiency for different brain patterns. High-level/low-level patterns include high or low-level patterns for both creative thinking ability (CTA) and ordinary 

cognitive abilities (OCA). ( b) The brain patterns’ network level total information transfer efficiency (across 0.1–2% edge densities). The solid lines along with shaded 

areas indicate mean values of efficiency for all patterns and 95% confidence intervals, respectively. (c) Comparison of brain patterns’ network level total information 

transfer efficiency at 1% edge density. The shaded areas reflect the density of the data points at different values. CTA + and CTA - separately indicate high and 

low-level brain patterns of creative thinking ability; OCA + and OCA - separately indicate high and low-level brain patterns of various ordinary cognitive abilities. 

The corresponding label for each dot of the ordinary cognitive ability can be seen in Fig S5. (d) Comparison of network level total information transfer efficiency 

between real and random patterns (real – null models) at 1% edge density for different brain patterns. Only the significant differences are marked by ∗ (corrected by 

FDR, p < 0.05 (right-tail)). Vis: visual network; SomMot: somatomotor network; DorsAttn: dorsal attention network; SalVenAttn: salience/ ventral attention network; 

Limbic: limbic network; frontoparietal: frontoparietal control network; Default: default mode network; SubCor: subcortical network. 
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oparietal control networks) exhibit higher information transfer effi-

iency in the high-level brain patterns; whereas, the efficiency of uni-

odal areas (especially the somatomotor network) is greater in the low-

evel brain patterns. This antagonism could be a common phenomenon

or both creative thinking and different ordinary cognitive abilities. No-

ably, the high-creative pattern surpassed other brain patterns in their

apacity for functional integration between different transmodal brain

etworks. Further interrogation of this capacity within the identified
10 
odules could reveal that the high-creative brain pattern shows signifi-

antly higher internal information transfer efficiency within all subordi-

ate modules, as well as between modules of Module 2 and Module 3 in

omparison to the null models (one sample t -test (right-tail), corrected

y FDR, p < 0.05; Fig. 6 a). Such results indicate the enhanced between-

etwork communication in high-creative brain pattern that can poten-

ially facilitate further integration of functional networks into super-

rdinate modules ( Fig. 6 b). 
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Fig. 6. Enhanced information transfer efficiencies of different modules in creativity-related brain patterns. (a) The difference of module level total information 

transfer efficiency between creativity-related brain patterns and null models. CTA + and CTA - separately indicate high and low-level brain patterns of creative 

thinking ability. Only the significant differences are marked by ∗ (corrected by FDR, p < 0.05 (right-tail)). ( b) The schematic diagram corresponding to the top left 

heat map, that illustrates how high-creative brain pattern (CTA + ) facilitates further integration of functional networks into super-ordinate modules and enhances 

their information transfer efficiencies. ∗ indicates the information transfer efficiency of a given path is significantly higher than null models (corrected by FDR, p < 

0.05 (right-tail)). 

3

 

t  

t  

i  

i  

p  

o  

c  

c  

o  

i  

t  

d  

(

s  

p  

n  

b  

(  

g  

t  

w  

(

 

s  

i  

fi  

u  

t  

t  

r  

a  

d  

n  

0  

t  

i  

d  

u

4

 

c  

v  

l  

t  

h  

a  

o  

m  

s  

(  

v  

i  

t  

t  

w  

a  

b  
.5. Validation results 

Given the importance of the modular structure of creative brain pat-

erns in the present study, a supplementary analysis was carried out

o test whether the module-based features could independently predict

ndividual’s creative thinking ability. Following the methods described

n the Methods and materials (see also the Fig. S6a), the analyses sup-

orted our hypothesis that, the more individuals’ functional network

rganization approaches to the high-creative pattern, the higher their

reative thinking ability would be. Although the low-creative pattern

ould not predict creative thinking ability independently, it could still

ffer valuable information, given that the aggregate indicator consider-

ng both high and low-creative patterns get slightly higher correlation

endency than applying the single indicator of high-creative pattern. In

etail, PTC significantly positively related to creative thinking ability

 r = 0.194, p < 0.05 × 10–7 (two-tails), 95% CI = 0.131–0.255); 𝑉 𝐼 𝑝𝑜𝑠 
ignificantly negatively related to creative thinking ability ( r = − 0.118,

 < 0.05 × 10–2 (two-tails), 95% CI = − 0.181–− 0.054); there was no sig-

ificant result in 𝑉 𝐼 𝑛𝑒𝑔 , though a weak positive correlation trend could

e observed ( r = 0.053, p = 0.11 (two-tails), 95% CI = − 0.111–0.117)

Fig. S6b). Further analysis at the regional level revealed that brain re-

ions whose module affiliations were of great importance to creative

hinking ability were mainly located in the default mode and visual net-

orks (corrected for multiple comparisons using the false discovery rate

FDR) at the level of p < 0.01; Fig. S6c). 

In addition, the validation analysis was also implemented via two

trategies to the feature importance matrix (Fig. S7a). The results of the

dentification strategy revealed high reliability (defined as the identi-

cation effect) of different feature importance matrices (i.e., patterns

nderlying psychological variates), in that most of the feature impor-

ance matrices could fully identify (identification effect = 1) their coun-
11 
erpart trained using data from a different time of scan (Fig. S7b). The

esults of the prediction strategy also confirmed the reliability (defined

s correlation coefficients between predicted values and true values) of

ifferent feature importance matrices, that all the correlations are sig-

ificant and the average correlation coefficients ranged from 0.20 to

.41 (Fig. S7c). As such, the results indicate that the threshold used in

his study ( p < 0.005) could lead to an optimal reliability of feature

mportance matrix, in that the general reliability values calculated by

ifferent strategies were always at a high level compared to the values

nder other thresholds (Fig. S8). 

. Discussion 

Creative thinking constitutes a vital component of our normal psy-

hological functioning, the neural correlates of which require further in-

estigation. To this end, using comprehensive datasets from large popu-

ation samples, our study characterized neural patterns of functional in-

eractions amongst large-scale brain networks that were associated with

igh versus low creative thinking ability across individuals, referred to

s the high versus low-creative brain patterns ( Fig. 1 ). From a graph the-

retical perspective, the high-creative brain pattern illustrated distinct

odules, yet with considerable functional integration amongst large-

cale brain networks in comparison to the low-creative brain pattern

 Fig. 2 ). Employing a traveling pattern prediction analysis, we then re-

ealed that the identified brain patterns, specifically the module involv-

ng functional interactions among default mode and frontoparietal con-

rol networks in the high-creative brain pattern, encoded vital rs-FC fea-

ures that could also predict cognitive abilities such as episodic memory,

orking memory and relational processing ( Fig. 3 ). In addition, using

 meta-analytic approach we found that the modules in high-creative

rain pattern were systematically dominated by hubs associated with
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l  
ifferent fundamental cognitive processes including sensorimotor pro-

essing, executive control function and memory-based processing. On

he contrary, the low-creative brain pattern was mainly driven by brain

reas that serve motor and visual processing roles ( Fig. 4 ). Moreover,

ur results indicated that the high-creative brain pattern particularly

ptimizes between-network information transfer efficiency ( Fig. 5 ) that

otentially enables an enhanced integrative capacity within the specific

odular organization ( Fig. 6 ). Collectively, these results indicate that

reative thinking may constitute an emergent property of ordinary cog-

itive processes, in which the specific wiring rules of the highly creative

rain may facilitate integration across functional networks into modules

hat contribute to a more efficient interplay of relevant cognitive oper-

tions in service of creative thinking. 

Mounting evidence from cognitive neurosciences now suggests that

reative thinking is supported by functional interactions across large-

cale brain networks that play distinct roles within higher cognitive

rocesses such as memory, attention, cognitive control and action sim-

lations ( Benedek, 2018 ; Chrysikou, 2019 ; Matheson and Kenett, 2020 ;

E et al., 2020 ). This dynamic interplay across cognitive processes

nd their neural instantiations is hypothesized to provide a mecha-

istic backbone for the emergence of creative thinking ( Beaty et al.,

019 ; Benedek and Fink, 2019 ). Although experimental evidence for this

odel remains scarce, emerging reports investigating brain functional

etwork organization allude to the central importance of such cogni-

ive and neural integration in the evolution of creativity ( Beaty et al.,

018 ; Liu et al., 2018 ). For example, Kenett and colleagues have recently

emonstrated that a creativity-related network integration is reflected

n the mesoscale brain network organization, which was marked by the

onsolidation of areas within the temporal lobes into cohesive clusters

 Kenett et al., 2020 ). Using a complementary data-driven approach, we

urther extend upon this finding by explicitly portraying the network

ntegration tendency of high-creative brain pattern, dominated by mod-

les that include functional interactions amongst transmodal areas as

ell as those that support visual and sensorimotor functions. Moreover,

e also found that this structure was perturbed in the low-creative brain

attern which highlight the vital importance of a balance between in-

egration and segregation amongst large-scale brain networks in cre-

tive thinking. In other words, the sets of basic functions embedded

ithin different modules may potentially facilitate more rapid task re-

ated adaptation ( Kashtan and Alon, 2005 ), and different forms of non-

inear dynamical behavior ( Meunier et al., 2010 ), that may meet the

eed to carry out more unstructured, open-ended, and non-linear pro-

essing in creative thinking ( Abraham, 2014 ). 

Furthermore, through traveling pattern prediction analysis, we un-

overed functional connectivity features within these modules that

ould support the link between creative thinking and various ordinary

ognitive abilities. In line with this observation, recent studies report

onsiderable overlap in functional connectivity features between cre-

tive thinking ability and cognitive performance across controlled se-

antic retrieval, higher-order reasoning, vocabulary knowledge and

ental manipulation ( Frith et al., 2019 ). Based on two large-scale and

ndependent datasets with robust characterization of both neural and

europsychological assessments, our study provides further reliable ev-

dence (avoiding the common method biases ( Podsakoff et al., 2003 )) for

hared neural resources among creative thinking and multiple cognitive

bilities. In detail, the creativity-related rs-FC features can specifically

redict a wide range of cognitive abilities (over 60% of included HCP

ognitive factors), which can be roughly divided into memory and lan-

uage related processing (including episodic memory, reading decoding,

entence judgment and relational processing), attention (including sus-

ained attention), executive control (including inhibition, spatial orien-

ation and working memory), as well as reasoning and intelligence (in-

luding Raven’s Matrices). The profound and complicated connections

f multiple cognitive processes with creativity have been highlighted

n the neurocognitive theories of creative cognition ( Jung and Varta-

ian, 2018 ). Notably, it has been claimed that creative thinking can be
12 
ommonly characterized by at least three core cognitive processes: the

onstructive memory processes that serve to generate novel represen-

ations; different attentional processes that enable people to consider

ore task-relevant information synchronously; and the cognitive con-

rol functions that implement goal-directed memory and attention pro-

esses ( Benedek and Fink, 2019 ). Therefore, creative thinking can be

ssessed by examining multiple ordinary cognitive processes under ex-

licitly generative conditions ( Abraham, 2013 , 2018 ). Here, our findings

ell resonated with these hypotheses, suggesting that creative thinking

s not an independent mental operation, but deeply grounded in the

ore cognitive processes such as memory, attention and executive con-

rol functions. 

Despite the shared neural representations between creative think-

ng and multiple cognitive abilities, however, we also revealed that the

dentified modules played unequal roles in their ability to predict in-

ividual variation in behavior. That is, the module which largely in-

olved the default mode and frontoparietal control networks in the

igh-creative pattern, explained the greatest individual variability in

reative thinking, which is highly consistent with findings from a prior

eport ( Beaty et al., 2018 ). Furthermore, this module showed the high-

st contribution to the correlations between creative thinking and dif-

erent cognitive abilities, which implies that the cooperation of these

wo networks is one of the most important neural bases bridging ordi-

ary cognitive processes and creative thinking. The default mode net-

ork along with the frontoparietal control network are both situated

t the peak of a hierarchy across macro-scale brain network organiza-

ion ( Margulies et al., 2016 ). The brain regions that give rise to these

wo transmodal areas display late myelination during development, sug-

esting that they might be responsible for especially advanced forms of

uman cognition ( Sowell et al., 2003 ). Modern theories postulate that

he default mode network may play a central role in the integration

f multimodal information ( Kernbach et al., 2018 ; Vatansever et al.,

015 ) to generate memory-based representations ( Buckner and DiNi-

ola, 2019 ; Vatansever et al., 2017 ). Conversely, the frontoparietal con-

rol network is hypothesized to be responsible for retaining and manip-

lating task-relevant information from the outputs of the default mode

etwork ( Spreng et al., 2010 ). As a “flexible hub ”, this control network

s suggested to rapidly update the pattern of global functional network

onfiguration for adaptive implementation of task demands ( Cole et al.,

013 ). As such, the emergence of the “default mode-frontoparietal ” in-

eraction as a strong predictor of creative thinking ability in our study

ay underline the central importance of this cooperation in enabling

reater integrative capacity in service of creative thinking. 

Moreover, our study interrogated the network level information

ransfer efficiency in connectivity paths marked by the identified brain

atterns. We demonstrated that the specific wiring rule of high-creative

rain pattern displayed particularly enhanced between-network infor-

ation transfer efficiency and thus greater capacity to facilitate inte-

ration across functional networks into super-ordinate modules. In ad-

ition, we found the hub-like structures linked to different fundamen-

al cognitive processes (from sensorimotor processing to higher order

emory-based processing) were embedded in these modules. It further

emonstrated the functional interactions in the highly creative brain

ould be parallelly driven by multiple cognitive processes, which again

upports the notion that creative thinking is an emergent property of

rdinary cognitive operations. 

From the above, the highly creative brain can be characterized by

istinct modules, that are largely dominated by hubs in charge of differ-

nt cognitive functions (Module 1: sensory processing; Module 2: gen-

ral executive functions; PM3: memory-based processing). Particularly,

he wiring rule of high-creative brain pattern can not only ensure the

nformation transfer within these modules, but also highlight the inter-

ction between Module 2 and 3. Thus, this kind of layout may provide

n optimized information processing framework for creative thinking.

ore precisely, it is acknowledged that creative thinking involves at

east two iterative phase: a generation phase and an evaluation phase.
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A  

A  
he generation phase (regarded as the core process) mainly takes charge

f combination of remote associations in a unique way, that relies on

earch processes through semantic ( Kenett et al., 2018a ) and autobi-

graphical memory ( Madore et al., 2017 ). The outputs of first phase

ould then suffer from a complementary evaluation processes mainly

ependent on the executive control processes. However, it is argued that

he evaluation not only happens in the second phase, but also included

n the first phase, divided into lenient and stringent cognitive control

 Kleinmintz et al., 2019 ). Based on this view, Module 3 with the dom-

nant function of memory-based processing may be responsible to the

eneration phase, where default mode network takes charge of generat-

ng novel ideas from memory system, and frontoparietal control network

n this phase provides a mechanism for goal-directed lenient control in

rder to shield the ongoing train of thought from irrelevant information.

he Module 2, the context-dependent attention system under the lead-

rship of frontoparietal control network (regions in charge of executive

ontrol functions), may be recruited in the evaluation phase, providing

 function of stringent executive control to ensure that the generated

deas are compatible to task environment. Notably, the high-efficiency

athway between Module 2 and 3 can well guarantee the cyclic motion

etween generation and evaluation phase. 

Furthermore, the high-creative brain pattern also highlighted brain

reas in charge of sensorimotor processing (Module 1), which have of-

en been overlooked by previous studies. This finding is consistent with

he latest perspective, which suggested the cognitive process of generat-

ng creative output, not just executing it, is deeply embedded in motor

rocesses ( Matheson and Kenett, 2020 ). The related brain regions, es-

ecially the supplementary motor area, may be attributable to mental

magination and motor simulation, that generally contribute to different

inds of creativity tasks ( Chen et al., 2020 ). Hereby, our findings sug-

est that the highly creative brain can also provide effective information

ransfer paths to facilitate sensorimotor processing. This is in line with

rior findings that report a relationship between creativity and higher

unctional integration in sensorimotor areas ( Kenett et al., 2018b ). 

The main limitation of the current study is that the individuals’

reative ability was assessed solely by their performance in tasks that

robed divergent thinking. Though divergent thinking is assumed to lie

t the heart of creative thinking ( Jauk, 2019 ; Runco and Acar, 2012 ),

onvergent thinking (generally captured by problem-solving tasks), may

lso constitute an important aspect of creativity ( Benedek et al., 2019 ).

ne recent behavioral study indicated that cognitive abilities such as

orking memory and verbal fluency contribute both to divergent and

onvergent thinking, but to differing degrees ( Dygert and Jarosz, 2020 ).

hus, based on the identified brain patterns in this study, a promising

irection for future research will be to focus on how different aspects of

reative thinking can emerge from different combinations of ordinary

ognitive abilities along with corresponding brain network configura-

ions. In addition, given that creative thinking is fundamentally a prop-

rty of ongoing cognitive processes, only capturing the trait-like brain

atterns may not meet the need to understand how different cognitive

rocesses dynamically give rise to creativity. Thus, future studies should

lso explore the fluctuations in brain dynamics through task-based de-

igns across different cognitive demands of creative thinking. 

In conclusion, our study provides strong evidence based on whole-

rain functional connectivity patterns to support the notion that creativ-

ty is not an independent mental operation, but it is rather an emergent

roperty of multiple ordinary cognitive processes. Particularly, we pro-

ide direct evidence for a shared mechanism in the neural instantiation

f creative and ordinary cognitive processes within the complex brain

etwork organization. Furthermore, we also show that the integrative

apacity of human connectomes plays a central role in this regard, which

ay constitute a valid marker of creative thinking ability to be used

n future studies investigating this aspect of human cognition in both

ealthy and disease states. These findings together provide new insights

or understanding how creative thinking can emerge from more funda-

ental cognitive processes through specific network configurations. 
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